Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 396 results
1.

An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.

red PhyB/PIF3 S. cerevisiae Nucleic acid editing
ACS Synth Biol, 10 Apr 2024 DOI: 10.1021/acssynbio.3c00476 Link to full text
Abstract: Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
2.

Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells.

red BphS HEK293 mouse in vivo Transgene expression
JACS Au, 6 Apr 2024 DOI: 10.1021/jacsau.4c00033 Link to full text
Abstract: Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
3.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
4.

Optical Control over Liquid–Liquid Phase Separation.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Small Methods, 26 Mar 2024 DOI: 10.1002/smtd.202301724 Link to full text
Abstract: Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
5.

Dynamics-driven allosteric stimulation of diguanylate cyclase activity in a red light-regulated phytochrome.

red Phytochromes Background
J Biol Chem, 24 Mar 2024 DOI: 10.1016/j.jbc.2024.107217 Link to full text
Abstract: Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.
6.

Opticool: Cutting-edge transgenic optical tools.

blue green near-infrared red UV violet iLID BLUF domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
PLoS Genet, 22 Mar 2024 DOI: 10.1371/journal.pgen.1011208 Link to full text
Abstract: Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
7.

Synthetic Biology Meets Ca2+ Release-Activated Ca2+ Channel-Dependent Immunomodulation.

blue red iLID Cryptochromes LOV domains Phytochromes Review
Cells, 7 Mar 2024 DOI: 10.3390/cells13060468 Link to full text
Abstract: Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
8.

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.
9.

Light-Guided Rabies Virus Tracing for Neural Circuit Analysis.

red PhyB/PIF3 rat cortical neurons Transgene expression
bioRxiv, 23 Feb 2024 DOI: 10.1101/2023.03.04.531104 Link to full text
Abstract: Neuronal tracing methods are essential tools to understand the fundamental architecture of neural circuits and their connection to the overall functional behavior of the brain. Viral vectors used to map these transsynaptic connections are capable of cell-type-specific and directional-specific labeling of the neuronal connections. Herein, we describe a novel approach to guide the transsynaptic spreading of the Rabies Virus (RV) retrograde tracer using light. We built a Baculovirus (BV) as a helper virus to deliver all the functional components necessary and sufficient for a nontoxic RV to spread from neuron to neuron, with a light-actuated gene switch to control the RV polymerase, the L gene. This design should allow for precisely controlled polysynaptic viral tracing with minimal viral toxicity. To use this system in a highly scalable and automated manner, we built optoelectronics for controlling this system in vitro with a large field of view using an off-the-shelf CMOS sensor, OLED display panel, and microcontrollers. We describe the assembly of these genetic circuits using the uLoop DNA assembly method and a library of genetic parts designed for the uLoop system. Combining these tools provides a framework for increasing the capabilities of nontoxic tracing through multiple synapses and increasing the throughput of neural tracing using viruses.
10.

OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells.

red PhyB/PIF6 HEK293T human T cells Jurkat Signaling cascade control Extracellular optogenetics
ACS Synth Biol, 9 Feb 2024 DOI: 10.1021/acssynbio.3c00518 Link to full text
Abstract: Optogenetics is a versatile and powerful tool for the control and analysis of cellular signaling processes. The activation of cellular receptors by light using optogenetic switches usually requires genetic manipulation of cells. However, this considerably limits the application in primary, nonengineered cells, which is crucial for the study of physiological signaling processes and for controlling cell fate and function for therapeutic purposes. To overcome this limitation, we developed a system for the light-dependent extracellular activation of cell surface receptors of nonengineered cells termed OptoREACT (Optogenetic Receptor Activation) based on the light-dependent protein interaction of A. thaliana phytochrome B (PhyB) with PIF6. In the OptoREACT system, a PIF6-coupled antibody fragment binds the T cell receptor (TCR) of Jurkat or primary human T cells, which upon illumination is bound by clustered phytochrome B to induce receptor oligomerization and activation. For clustering of PhyB, we either used tetramerization by streptavidin or immobilized PhyB on the surface of cells to emulate the interaction of a T cell with an antigen-presenting cell. We anticipate that this extracellular optogenetic approach will be applicable for the light-controlled activation of further cell surface receptors in primary, nonengineered cells for versatile applications in fundamental and applied research.
11.

Epstein-Barr Virus Promotes Tumorigenicity and Worsens Hodgkin Lymphoma Prognosis by Activating JAK/STAT and NF-κB Signaling Pathways.

blue red DmBphP PAL E. coli Transgene expression Multichromatic
Iran J Med Sci, 1 Feb 2024 DOI: 10.21203/rs.3.rs-3902447/v1 Link to full text
Abstract: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL).
12.

Multimodal Control of Bacterial Gene Expression by Red and Blue Light.

blue red DrBphP PAL E. coli Multichromatic
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3658-9_26 Link to full text
Abstract: By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.
13.

A red light-induced genetic system for control of extracellular electron transfer.

blue red iLight YtvA E. coli Transgene expression Multichromatic
bioRxiv, 2 Dec 2023 DOI: 10.1101/2023.12.02.569691 Link to full text
Abstract: Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported into new host strains. Here, we developed and adapted a red light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. Promoter engineering and a thermodynamic model were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer (EET) within S. oneidensis. The ability to use both red and blue light-induced optogenetic circuits simultaneously was demonstrated. Our work expands the synthetic biology toolbox of Shewanella, which could facilitate future advances in applications with electrogenic bacteria.
14.

Unlocking the potential of optogenetics in microbial applications.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Microbiol, 30 Nov 2023 DOI: 10.1016/j.mib.2023.102404 Link to full text
Abstract: Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
15.

Near-Infrared Optogenetic Module for Conditional Protein Splicing.

red DrBphP MagRed HEK293T HeLa Transgene expression Cell death
J Mol Biol, 8 Nov 2023 DOI: 10.1016/j.jmb.2023.168360 Link to full text
Abstract: Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.
16.

Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice.

red Phytochromes Background
J Adv Res, 4 Nov 2023 DOI: 10.1016/j.jare.2023.11.001 Link to full text
Abstract: Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants.
17.

Emerging optogenetics technologies in biomedical applications.

blue green near-infrared red UV violet Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Smart Med, 1 Nov 2023 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
18.

A programmable protease-based protein secretion platform for therapeutic applications.

blue red BphS CRY2/CIB1 Magnets PhyA/FHY1 Hana3A HEK293T hMSCs mouse IPSCs Control of vesicular transport
Nat Chem Biol, 23 Oct 2023 DOI: 10.1038/s41589-023-01433-z Link to full text
Abstract: Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.
19.

Direct investigation of cell contraction signal networks by light-based perturbation methods.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Pflugers Arch, 18 Oct 2023 DOI: 10.1007/s00424-023-02864-2 Link to full text
Abstract: Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
20.

Optogenetics in Alzheimer's Disease: Focus on Astrocytes.

blue red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Antioxidants (Basel), 13 Oct 2023 DOI: 10.3390/antiox12101856 Link to full text
Abstract: Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
21.

Engineering of an Optogenetic T Cell Receptor Compatible with Fluorescence-Based Readouts.

red PhyB/PIF6 Jurkat Signaling cascade control
ACS Synth Biol, 2 Oct 2023 DOI: 10.1021/acssynbio.3c00429 Link to full text
Abstract: Optogenetics offers a set of tools for the precise manipulation of signaling pathways. Here we exploit optogenetics to experimentally change the kinetics of protein-protein interactions on demand. We had developed a system in which the interaction of a modified T cell receptor (TCR) with an engineered ligand can be controlled by light. The ligand was the plant photoreceptor phytochrome B (PhyB) and the TCR included a TCRβ chain fused to GFP and a mutated PhyB-interacting factor (PIFS), resulting in the GFP-PIFS-TCR. We failed to engineer a nonfluorescent PIFS-fused TCR, since PIFS did not bind to PhyB when omitting GFP. Here we tested nine different versions of PIFS-fused TCRs. We found that the SNAP-PIFS-TCR was expressed well on the surface, bound to PhyB, and subsequently elicited activation signals. This receptor could be combined with a GFP reporter system in which the expression of GFP is driven by the transcription factor NF-AT.
22.

Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Int J Mol Sci, 29 Sep 2023 DOI: 10.3390/ijms241914741 Link to full text
Abstract: Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
23.

Allosteric regulation of kinase activity in living cells.

blue cyan red Fluorescent proteins LOV domains Phytochromes Review
bioRxiv, 25 Sep 2023 DOI: 10.1101/2023.07.19.549709 Link to full text
Abstract: The dysregulation of protein kinases is associated with multiple diseases due to the kinases’ involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or “sensors” are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
24.

Light-inducible T cell engagers trigger, tune, and shape the activation of primary T cells.

red PhyB/PIF6 human T cells Signaling cascade control Extracellular optogenetics
Proc Natl Acad Sci U S A, 18 Sep 2023 DOI: 10.1073/pnas.2302500120 Link to full text
Abstract: To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR). The LiTE system constitutes a reversible molecular switch displaying exquisite reactivity. As proof of concept, we dissect how specific temporal patterns of TCR stimulation shape T cell activation. We established that CD4+ T cells respond to intermittent TCR stimulation more efficiently than their CD8+ T cells counterparts and provide evidence that distinct sequences of TCR stimulation encode different cytokine programs. Finally, we show that the LiTE system could be exploited to create light-activated bispecific T cell engagers and manipulate tumor cell killing. Overall, the LiTE system provides opportunities to understand how T cells integrate TCR stimulations and to trigger T cell cytotoxicity with high spatiotemporal control.
25.

Quantitative insights in tissue growth and morphogenesis with optogenetics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Phys Biol, 7 Sep 2023 DOI: 10.1088/1478-3975/acf7a1 Link to full text
Abstract: Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Submit a new publication to our database